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Abstract

All-metallic sandwich panels with prismatic cores are being currently investigated for combined structural and active cooling perfor-
mance. We present a new approach to active cooling performance, and use it to optimize the panel geometry for four different systems:
aluminum-air, aluminum-water, aluminum-gasoline and titanium-gasoline. The results show that some geometric parameters can be
fixed without much detriment in thermal performance. Moreover, while optimal core densities are typically 25–50%, near-optimal results
can be obtained with densities as low as 10%. These findings provide considerable geometric flexibility when attempting combined ther-
mal and structural optimization.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

All-metallic sandwich panels with prismatic cores
(Fig. 1a) are among the most weight-efficient structures,
provided that the loading is parallel to the corrugation
direction [1,2]. Concomitantly, their open core topology
renders them amenable to active cooling: a fluid flowing
through the open channels is capable of removing a heat
flux impinging on one (or both) faces [3]. These designs
might be suitable for many (aerospace and naval) applica-
tions, which require the simultaneous ability to sustain
high heat flux while supporting large pressure or structural
loads. With this bi-functionality in mind, the remaining
challenge is to optimize the geometric parameters appli-
cable to various combinations of structural and ther-
mal loads. Structural optimization has been extensively
addressed [4–7]. Moreover, analytic models and numerical
studies exist for the overall heat transfer coefficient for pan-
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els with various core topologies, including foam [8,9], truss
[10–13], textile [14,15] and honeycomb [16,17] cores. The
latter have been reviewed [3] in an attempt to provide
guidelines for ranking various heat sink technologies. How-
ever, the authors are unaware of attempts at geometric opti-

mization. Here we address this deficiency for prismatic
panels, with emphasis on corrugated and diamond cores.
Initially, active cooling performance is defined in a way
most useful for design. Two non-dimensional parameters
are introduced, related to the achievable heat flux removal
and the imposed pumping power. The panel geometry is
then optimized with the goal of maximizing the heat flux
at different values of pumping power.

The article is organized as follows. Section 2 relates this
research with a previously published review [3]. Section 3
emphasizes the limitation of the previous approach and
justifies the introduction of the new scheme. In Section 4,
the new non-dimensional parameters are expressed as func-
tions of the panel geometry and the material properties.
Correlations are used to express the heat transfer and
fluid flow performance at the duct level. While a similar
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Nomenclature

cp specific heat (J/kg K)
D hydraulic diameter (m)
Hc core thickness (m)
h heat transfer coefficient (W/m2 K)
k thermal conductivity (W/m K)
L panel length (m)
m inverse length-scale (m�1)
_m flow rate (kg/s)
n order of corrugation
p pressure (Pa)
P pumping Power (W)
q specific heat flux (W/m2)
Q heat flux (W)
R thermal resistance ((W/K)�1)
t core web thickness (m)
T temperature (K)
u flow velocity (m/s)
W panel width (m)
x, y, z cartesian coordinates
X, XT hydrodynamic and thermal entry lengths (m)

Greek symbols

a, b non-dimensional parameters
af thermal diffusivity of the fluid (m2/s)
D variation
/ area fraction
h angle of corrugation (rad)
j wall roughness (m)
l dynamic viscosity (kg/m s)
m kinematical viscosity (m2/s)
q density (kg/m3)
�qc relative density of the core
n rotated y coordinate

Non-dimensional groups

f friction factor
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
D, D* geometric indices
U fluid index
P, P* topological indices
Ph heat transfer parameter
Pp pumping power parameter

Subscripts and superscripts

0 upstream conditions
1 relative to one corrugated wall in the core
ave averaged between the triangular and rhombic

ducts
c relative to the core
cond conductive
conv convective
cr critical (for laminar to turbulent transition)
D relative to the hydraulic diameter
f relative to the fluid
H relative to the core thickness
in inlet
m relative to the top metal face
max maximum
out outlet
rh relative to the rhombic ducts
s relative to the solid
tr relative to the triangular ducts
T thermal
w relative to the fraction of the top face in direct

contact with the fluid

3820 L. Valdevit et al. / International Journal of Heat and Mass Transfer 49 (2006) 3819–3830
approach has already been extensively used [3,8–17], here
we account for the existence of two families of ducts (trian-
gular and rhombic) with different flow regimes. Section 5
presents the genetic optimization scheme, the results are
described in Section 6, and conclusions follow.

2. Background

A schematic of the panels under consideration, together
with the coordinate system, is depicted in Fig. 1. When nor-
malized by the panel length, L, four variables fully charac-
terize the cellular geometry: the core thickness Hc/L, the
core web thickness t/L, the corrugation angle h and the
order of corrugation n (n = 1 and 4, for the panels of
Fig. 1). We envision a loading scenario wherein a uniform
thermal flux Q is imposed on the top face. The bottom face
and the sides are insulated, so that the flux is entirely
removed by a cooling fluid. The fluid enters at a tempera-
ture Tf,in and exits at a temperature Tf,out. The maximum
temperature in the metal, Tm,max, occurs on the top face
at the outlet.

To describe the flow characteristics, it is convenient to
introduce three non-dimensional quantities: the Reynolds
number ReH, the friction factor fH and the Nusselt number
NuH. These parameters relate to the fluid velocity, the fric-
tional dissipation, and the panel-level heat transfer coeffi-
cient hH, respectively:

ReH ¼
qfu0H c

lf

ð1Þ

fH ¼
Dp
L H c

1
2
qfu

2
0

ð2Þ

NuH ¼
hH H c

kf

¼ Q
WLðT mðxÞ � T fðxÞÞ

H c

kf

ð3Þ

where qf, lf and kf are the density, dynamic viscosity and
thermal conductivity of the cooling fluid, Dp is the pressure
drop over the entire length L of the panel, and u0 is the
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Fig. 1. (a) Schematic of the panels under consideration and thermal
loading scenario; (b) unit cells for corrugated and diamond panels, with
dimensions and coordinate system. The diamond panel sketched has order
of corrugation n = 4.
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Fig. 2. Comparison of different heat sink technologies. The line of slope
three is the index used to gain some preliminary information on the
relative performance of different designs. Notice that this approach does
not account for physical temperature limits in the heat sink itself.

L. Valdevit et al. / International Journal of Heat and Mass Transfer 49 (2006) 3819–3830 3821
mean fluid velocity upstream of the panel. The temperature
Tm(x) is the local value at the top face (averaged through
the width of the panel, W), and Tf(x) is the average (mix-
ing-cup) temperature of the fluid, at axial location x. For
fully developed flow, the temperature difference Tm(x) �
Tf(x) is independent of x, so that Eq. (3) defines the Nusselt
number with no ambiguity [18]. Note that all the three
quantities in Eqs. (1)–(3) have been normalized by the core
thickness, thus allowing direct comparison of the active
cooling performance for different designs [3].

Appropriate combinations of these three non-dimen-
sional parameters can be used to identify the most promis-
ing designs for active cooling [3]. In particular, we can re-
arrange Eqs. (1)–(3) to express the results in terms of the
pumping power P needed to maintain the fluid flow at a
velocity u0 against the pressure drop Dp:

Dp ¼ 1

2
ðfH Re2

H Þ
l2

f

qf

� �
ðLH�3

c Þ ð4Þ

P ¼ Dp u0WH c ¼
1

2
ðfH Re3

H Þ
l3

f

q2
f

� �
ðLWH�3

c Þ ð5Þ

Q
T mðxÞ � T fðxÞ

¼ ðNuH ÞðkfÞðWLH�1
c Þ ð6Þ

which, upon combining, give:
Q
ðT mðxÞ � T fðxÞÞP

¼ P � U � D

P ¼ NuH

fH Re3
H

U ¼ kfq2
f

l3
f

D ¼ 2H 2
c

ð7Þ

This formula reveals that the heat flux dissipated per unit
temperature difference at a given pumping power can be
expressed as the product of three terms: a non-dimensional
topology index, P, a fluid index, U, and a geometric index,
D. For given panel thickness Hc and cooling fluid (U), opti-
mizing the heat flux per unit temperature difference and
pumping power is equivalent to maximizing P. Identifica-
tion of the best candidates is facilitated by maps plotting
NuH/fH against ReH for several competing designs
(Fig. 2), where contours of constant P become lines of slope
3. Most of the ellipses in Fig. 2 are envelopes of experimen-
tal results (see [3] for details). Designs in the top left corner
are the most efficient. According to this scheme, empty rect-
angular channels with laminar flow give the best thermal
performance, while corrugated core panels are only as good
as tetragonal and textile core panels and only slightly better
than foam core panels. These conclusions are subject to a
number of limitations addressed in the next section.

3. Problem statement

The preceding implications regarding the best thermal
performance are misleading because of the following three
fundamental limitations of the optimization scheme:
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(a) No constraint was imposed on the maximum allow-
able temperature in the metal (or fluid). Conse-
quently, at specified Tm(x) � Tf(x), designs that are
optimal at very low Reynolds number (empty ducts
with laminar flow) reach higher temperatures than
designs that operate in the turbulent flow range.

(b) The temperature difference Tm(x) � Tf(x) is rarely a
design parameter; usually the incoming fluid temper-
ature, Tf,in, is specified by the system, while a con-
straint on the mechanical properties of the metal
imposes a temperature maximum: Tm,out = Tm,max.
A temperature difference Tm,max � Tf,in is thus more
useful, in practice.

(c) The preceding method assumes that the Reynolds
number can be varied arbitrarily, and independently
from NuH and fH. This is not true, since the Reynolds
number is related to the pumping power and the fric-
tion factor. Furthermore, the Reynolds number is not
known a priori.

It follows from these limitations that a design-conscious
optimization is required. Here we suggest an approach that
addresses all of the above deficiencies. Specifically, we
define a new objective function:

Q
ðT m;max � T f;inÞP

ð8Þ

Since two of the quantities in Eq. (8) should be known, the
new method must be able to optimize the third. By invok-
ing Eqs. (4)–(7), the objective function can be re-written as

Q
ðT m;max � T f ;inÞP

¼ P� � U � D�

P� ¼ NuH ðH c=LÞ2

fH Re3
H 1þ NuH

Pr ReH ðH c=LÞ

h i
D� ¼ 2L2

ð9Þ

where Pr = mf/af = lfcp/kf is the Prandtl number of the
fluid.1

For any choice of coolant fluid and panel length, opti-
mizing (8) translates into maximizing the non-dimensional
parameter, P*.

In order to address the dependence on Reynolds num-
ber, we redefine the topology index as P* = Ph/Pp where
for every value of:

Pp ¼
fH Re3

H

ðH c=LÞ3
ð10Þ

we maximize:

Ph ¼
NuH

ðH c=LÞ 1þ NuH
PrReH ðH c=LÞ

h i ð11Þ
1 In deriving Eq. (9), we used the equalities: Tm,max � Tf,in =
(Tm,max � Tf,out) + DTf = (Tm(x) � Tf(x)) + DTf; Eq. (27) was used to
estimate DTf.
Clearly, the problem has not changed, but now the two
new topology indices relate to physical quantities:

Q
T m;max � T f ;in

¼ kfW Ph

P ¼ 1

2

l3
f

q2
f

W

L2
Pp

ð12Þ

Maps of Ph against Pp will allow a meaningful comparison
of different designs for the same working fluid, and will
immediately identify the best candidates for active cooling
at specified pumping power. In this article, we apply this
method to prismatic core panels and seek geometric vari-
ables that maximize the heat transfer index for a wide range
of the pumping power. An intermediate step relates the flow
and thermal parameters for the panel (ReH, fH,NuH) to
those for its constituents (the triangular and/or rhombic
channels). The advantage is that correlations for channel-
level friction factors and Nusselt numbers are widely avail-
able in the literature [19,20].

4. Transposing panel and channel-level indices

The approach used to calculate the friction factor differs
in three ways from that used elsewhere [3,16,17]: (a) we use
Pp instead of ReH (or u0) as the independent variable, (b)
we fully account for both laminar and turbulent flow,
and (c) we recognize that a diamond core panel consists
of both triangular and rhombic ducts (a distinction that
becomes particularly important at low order of corruga-
tion, n: see Fig. 1b). The calculation of the Nusselt number
follows the method developed elsewhere [3,16,17], with the
exception that the local heat transfer coefficient is averaged
over triangular and rhombic ducts. Fully developed flow
profiles (both kinematical and thermal) are implied, which
requires that the panel be long enough to smooth out entry
and exit effects (Appendix 1) [18]. The optima that are iden-
tified are only weakly dependent on temperature because
the most temperature dependent index, U, is used outside
the optimization algorithm. Accordingly, the temperature
dependence of the properties is neglected: here all values
have been calculated at 50 �C.

We assume that all channels (triangular close to the face
sheets, and rhombic everywhere) are subjected to the same
pressure drop: implying that the two families of channel
shape experience different flow velocities (the faster flow
being in the rhombic ducts by virtue of their larger hydrau-
lic diameter). This assumption is clearly an idealization, but
we believe it is more appropriate than assuming a uniform
velocity profile and variable pressure drop.

Both the pressure drop and the flow velocities are
unknown a priori, particularly whether the flow conditions
are laminar or turbulent. Three options are possible: (a)
laminar flow in both; (b) laminar flow in the triangular
ducts and turbulent flow in rhombic channels; (c) turbulent
flow in both. The protocol for addressing these options is
addressed in Section 4.4.



L. Valdevit et al. / International Journal of Heat and Mass Transfer 49 (2006) 3819–3830 3823
4.1. Friction factor

The calculation of fH and ReH makes use of two conser-
vation equations:

u0

1� �qc

¼ /trutr þ /rhurh ðmass conservationÞ ð13Þ

P ¼ Dp H c W u0 ðmomentum conservationÞ ð14Þ

where utr and urh are the fully developed average fluid
velocities within the triangular and rhombic channels,
/tr = 1/n and /rh = 1 � 1/n are the area fractions of each
family of channels, and �qc is the core relative density:

�qc � 1� 1� n
2 cos h

t
H c

� �2

ð15Þ

The channel-level Reynolds numbers are

Retr ¼
qfutrDtr

lf

; Rerh ¼
qf urhDrh

lf

ð16Þ

where Dtr and Drh are the hydraulic diameters of the trian-
gular and rhombic channels:

Dtr ¼
2 cos h

1þ cos h
H c

n
� t

2 cos h

� �

Drh ¼
2 cos h

n
H c � t

ð17Þ

Eqs. (13) and (14) can be re-written in non-dimensional
form as

ReH

1� �qc

¼ /tr

Retr

Dtr=H c

þ /rh

Rerh

Drh=H c

ðmass conservationÞ

ð18Þ

Pp ¼
fH Re3

H

ðH c=LÞ3
ðmomentum conservationÞ ð19Þ

By defining the channel-level friction factors as2:

ftr ¼
DtrðDp=LÞ

2qf u2
tr

; f rh ¼
DrhðDp=LÞ

2qfu
2
rh

ð20Þ

the relations between channel-level and panel-level friction
factors, in non-dimensional form, become

ftr ¼
fH

4

ReH

Retr

� �2 Dtr

H c

� �3

frh ¼
fH

4

ReH

Rerh

� �2 Drh

H c

� �3
ð21Þ

By estimating ftr and frh from correlations available in the
literature (for laminar and turbulent flow), Eqs. (18), (19)
and (21) enable the evaluation of fH, ReH, Retr and Rerh.
Hence we were able to relate flow properties at the indi-
vidual channel level to macroscopic panel-level flow
characteristics.
2 The numerical factor differs from that in Eq. (2) [3] to be more
consistent with the majority of the literature [18–20].
4.2. Nusselt number

The procedure for evaluating the Nusselt number
involves the following four steps [3] (all coordinates are
depicted in Fig. 1b):

(a) A unit cell, thickness Hc, is identified.
(b) The fluid temperature Tf(x) is calculated by imposing

energy conservation.
(c) An energy balance at the face-core interface is

invoked to determine the heat flux entering the core.
(d) The temperature of the solid Ts(x) within the unit cell

is calculated as a function of Tf(x) by using a one-
dimensional fin analogy.

The channel-level Nusselt numbers,

Nutr;rh ¼
htr;rhDtr;rh

kf

¼ qðx; y; zÞ
T sðx; y; zÞ � T fðxÞ

ð22Þ

are either found in the literature, or derived using experi-
mental techniques or determined by numerical methods.

To proceed we adopt four simplifications:

(a) Conduction through the face is infinite (thin face
approximation), so that its thickness does not appear
in the problem.

(b) Axial conduction is negligible. While reasonable for
the fluid, especially in the limit of large Peclet number
[18], this assumption is more restrictive for the solid,
particularly for thick walls and highly conductive
materials. However, relaxing this hypothesis impedes
an analytical derivation and severely complicates the
ensuing optimization.

(c) The width of the panel W is large enough to eliminate
edge effects such that all temperature distributions are
functions of x and y only.

(d) The fluid temperature varies with x only; namely,
Tf(x) represents the mixing-cup temperature at loca-
tion x.

With these simplifications, the temperature in the solid
satisfies the one-dimensional fin equation:

o2T sðx; nÞ
on2

� 2h
kst
½T sðx; nÞ � T fðxÞ� ¼ 0 ð23Þ

where n = y/sinh is the coordinate along the corrugated
wall (see Fig. 1b), ks is the thermal conductivity of the
solid, and h is the local heat transfer coefficient (approxi-
mated as a weighted average of the triangular and rhombic
channel values, h = htr/tr + hrh/rh).

We solve (23), with boundary conditions:

�ks

oT s

on

����
n¼0

¼ q1

oT s

on

����
n¼H c= sin h

¼ 0

8>>><
>>>:

ð24Þ
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where q1 is the heat flux entering the corrugated wall from
one face (yet to be calculated). The resulting temperature in
the solid is

T sðx; nÞ ¼ T fðxÞ þ
q1

ksm
coshðmðH c= sin h� nÞÞ

sinhðmH c= sin hÞ ð25Þ

with m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h=kst

p
.

The temperature in the fluid is readily calculated by
imposing energy conservation along the x (axial) direction:

_mcp
dT fðxÞ

dx
¼ qW ð26Þ

Here q is the heat flux imposed on the top face sheet
(Q = qWL), _m ¼ qf u0WH c is the mass flow rate, and cp is
the specific heat of the fluid. The solution is

T fðxÞ ¼ T f;in þ
q

H cqfcpu0

x: ð27Þ

In order to calculate q1, we impose an energy balance at the
node in contact with the top face:

q ¼ qw/w þ q1ð1� /wÞ ð28Þ
where qw is the heat flux into the fluid from the faces and
/w ffi 1� �qc represents the area fraction of the face sheet
in direct contact with the fluid. By noting that the heat flux
from the faces is

qwðxÞ ¼ htr½T sðx; n ¼ 0Þ � T fðxÞ� ¼
htrq1

ksm
tanh�1ðmH c= sin hÞ

ð29Þ
we can express q1 as a function of q. By recalling the defi-
nition of Nusselt number at the panel level (Eq. (3)), and
analogously defining the Nusselt numbers at the cell level:

Nutr ¼
htrDtr

kf

; Nurh ¼
hrhDrh

kf

ð30Þ

we can finally write:

NuH ¼
Nutr

Dtr=H c

ð1� �qcÞ þ �qc

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ks

kf

Nutr

Dtr=H c

/tr þ
Nurh

Drh=H c

/rh

� �
H c=L
t=L

s

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

kf

ks

Nutr

Dtr=H c

/tr þ
Nurh

Drh=H c

/rh

� �
H c=L
t=L

s
csc h

" #

ð31Þ
Table 1
Summary of correlations used

Nusselt number

Laminar� Turbulent*

Triangular ducts Nutr(h) ðftr=2ÞðRetr�1000ÞPr

1þ12:7
ffiffiffiffiffiffiffi
ftr=2
p

ðPr2=3�1Þ

Rhombic ducts Nurh(h) ðfrh=2ÞðRerh�1000ÞPr

1þ12:7
ffiffiffiffiffiffiffiffi
frh=2
p

ðPr2=3�1Þ

The functions Nutr(h), Nurh(h), (ftr Æ Retr)(h) and (frh Æ Rerh)(h) are plotted in F
* From [18].
� From [19].
This result allows the overall thermal characteristics to be
related to the Nusselt numbers evaluated at the cell level:
Nutr and Nurh.

4.3. Correlations at the channel level

Correlations are available in the literature for laminar
and turbulent flow in ducts [19,20]. For laminar flow, Nu

only depends on the shape of the channel and is indepen-
dent of Re, whereas f is inversely proportional to Re. For
turbulent flow, Nu increases with Re (at a rate that depends
on the correlation used); whereas f, in the rough channel
limit [18], only depends on the ratio of the channel rough-
ness to the hydraulic diameter (j/D). The details are
reported in Table 1, with the angular dependences of Nu

and (f Æ Re) in the laminar regime plotted in Fig. 3.

4.4. Heat transfer and pumping power parameters

Since the Reynolds numbers are not known a priori, it
cannot be ascertained whether the flow is laminar or turbu-
lent, which prevents direct determination of the panel-level
friction factor. The iterative scheme illustrated on Fig. 4 is
invoked. Three possibilities must be pursued:

The flow is laminar in both ducts, whereupon

fH ¼
a

ReH
and ReH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PpðH c=LÞ3

a

s
ð32Þ

with

a ¼ 4

1� �qc

�
/tr

ðDtr=H cÞ2

ðftr � RetrÞ
þ /rh

ðDrh=H cÞ2

ðfrh � RerhÞ

 !
ð33Þ

The duct level Reynolds numbers follow as

Retr ¼
aðDtr=H cÞ3ReH

4ðftr � RetrÞ
and Rerh ¼

aðDrh=H cÞ3ReH

4ðfrh � RerhÞ
ð34Þ

If any local Re calculated according to these equations ex-
ceeds the turbulent transition (Recrit = 2000 for the calcula-
tions here), the flow is assumed not to be laminar in both
channels.

The flow is turbulent in both ducts, whereupon

fH ¼ ð1� �qcÞ /tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtr=H c

4f tr

s
þ /rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drh=H c

4f rh

s !" #�2

ð35Þ
Friction factor

Laminar� Turbulent*

(ftr Æ Retr)(h) 1:74 log Dtr

j

	 

þ 2:78

	 
�2

(frh Æ Rerh) (h) ð1:74 logðDrh

j Þ þ 2:78Þ�2

ig. 3.
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Fig. 4. Flowchart of the procedure used in the calculation of panel-level fric
conditions (laminar or turbulent flow) are not known a priori.
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The panel-level Reynolds number will then be ReH =
(Pp/fH)1/3Hc/L, and the local Reynolds numbers at the
duct level will be

Retr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtr=H cÞ3

4f tr

fH

s
ReH and

Rerh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDrh=H cÞ3

4f rh

fH

s
ReH ð36Þ

If Retr < Recrit, the flow will be laminar in the triangular

channels, but turbulent in the rhombic. In this case, the fric-
tion factor can be obtained by numerically solving:

/trð1� �qcÞ
ðDtr=H cÞ2

4ðftr � RetrÞ

ffiffiffiffiffiffi
Pp

fH

3

s
H c

L
fH

þ /rhð1� �qcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drh=H c

4f rh

fH

s
¼ 1 ð37Þ

Once the friction factor is obtained, the panel-level and
duct-level Re become:

ReH ¼
ffiffiffiffiffiffi
Pp

fH

3

s
H c

L
; Retr ¼

fH Re2
H

4ðftr � RetrÞ
Dtr

H c

� �3

;

Rerh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDrh=H cÞ3

4f rh

fH

s
ReH ð38Þ
tion factor and Nusselt number. This scheme is necessary since the flow



Table 2
Properties of the fluids and metals considered [18]. All fluid properties are at 323 K (50 C)

kf,s (W/m K) lf (kg/m s) qf (kg/m3) mf (m2/s) Pr kfq2
f =l

3
f ðK

�1 m�2Þ
Air 0.028 2.00 · 10�5 1.06 1.89 · 10�5 0.70 3.93 · 1012

Water 0.64 5.48 · 10�4 988 5.55 · 10�7 3.57 3.80 · 1015

Gasoline 0.11 3.70 · 10�4 721 5.13 · 10�7 7.40 1.13 · 1015

Aluminum 200
Titanium 22
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Fig. 5. Optimal thermal performance as a function of pumping power for
the four materials systems under investigation. Results are presented for
the fully optimized geometry, as well as for three more restrictive cases: (a)
h = 45�, n = 4, (b) h = 45�, n = 1, and (c) h = 45�, n = 1 with �qc 6 0:1.
Except for case (c), all core densities are constrained to �qc 6 0:5.
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The approach taken here is expected to be most inaccurate
when Re � Recrit in either of the channel types, since the
correlations used do not capture the details of the
transition.

5. The thermal optimization scheme

Four different materials systems have been analyzed:
aluminum-air, aluminum-water, aluminum-gasoline and
titanium-gasoline. The relevant materials properties are
reported in Table 2. As already noted, variations in prop-
erties with temperature have been ignored: values at
50 �C were used. The optimization scheme proceeds as
follows:

(a) Bounds for the geometric variables are defined:

0:005 6
H c

L
6 0:1

0:0005 6
t
L
6 0:01

25	 6 h 6 75	

1 6 n 6 33

ð39Þ

(b) A reasonable range for the pumping power coefficient
is chosen (1012

6 Pp 6 1022) to assure that for all the
fluids considered (air, water and gasoline) and for 1 m
panels, the range of powers 1 W! 100 kW are
incorporated.

(c) An upper bound for the core density is specified; for
most calculations, �qc 6 0:5.The roughness of the core
webs is assumed to scale with the core web thickness
t/L; in our calculations we take: j/t = 0.05.

(d) A genetic optimization method was used for all the
calculations (see Appendix 3 for details). The geome-
try of each material system was optimized to obtain
the maximum heat transfer parameter using many
values of the pumping power parameter (1024 values
in the aforementioned interval).

6. Optimal designs

6.1. Thermal performance

The thermal performance, Ph(Pp) of the fully optimized
panel with �qc 6 0:5 is plotted in Fig. 5, superimposed on
the optimal performances of panels chosen for their ease
of fabrication, as well as their close connection with struc-
tural optima [1,2]:

(a) h = 45�, n = 4, (b) h = 45�, n = 1, and (c) h = 45�,
n = 1 with �qc 6 0:1. The major finding is that these con-

straints have minimal effect on the optimal thermal perfor-

mance. In particular, case (a) is almost identical to the
fully optimized panel, except at very low pumping power.

Inspection of the results for the fully optimized designs
reveals several important characteristics:

(i) The optimal angles are almost always close to either
of the bounds, h = 25� or h = 75�. Since imposing
h = 45� does not reduce the performance signifi-
cantly, this suggests that the angle can be set arbi-
trarily to obtain near-optimal designs.

(ii) The order of corrugation has a more pronounced
effect. For h = 45�, among values in the range
1 6 n 6 16, n=4 is optimal.

(iii) The optimal densities are quite high, �qc > 0:15, often
saturating at �qc � 0:5.
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The similarity of the optimal performances of the
designs studied does not suggest that the thermal perfor-
mance is geometry insensitive. Changing one geometric
variable and leaving the others unchanged has a dramatic
effect on the performance. This aspect of performance
can be inferred from Figs. 6–8, where the optimal values
of core thickness (Hc/L) and core web thickness (t/L) are
presented. Note that imposing constraints on some geo-
metric variables (n and h) substantially modifies the opti-
mum for the others. Some of the factors affecting the
preferred geometries are elaborated below.

6.2. Topology

The two heat transfer mechanisms present in cellular
panels (conduction through the core webs and convection
in the fluid) impose opposite requirements on the geometric
variables. Efficient conduction requires large core web
thickness and small panel thickness, resulting in small tem-
perature difference between metal and fluid (see Eq. (25)).
Conversely, convection is enhanced by a large panel thick-
ness (at least a large pumping power), resulting in large
hydraulic diameters. It follows that the optimal geometries
resulting from this trade-off are difficult to rationalize from
simple physical arguments.

Optimal values of �qc; H c=L and t/L are reported in Figs.
6–8. For the preferred geometries, the results fluctuate at
low pumping power due to laminar-to-turbulent transitions
(at low power the optimal conditions are laminar, but they
gradually transition to turbulent). The procedure for cap-
turing this transition in the model (see Fig. 4) is responsible
for the oscillations in the figures. The issues are illustrated
for the case h = 45�, n = 4 for the aluminum-water system.
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At lowest power, both Hc/L and t/L decrease with Pp, and
the flow is laminar in both channels. The first spike corre-
sponds to the transition Re! Recr in the rhombic channels.
At this stage, the optimal dimensions decrease abruptly by
maintaining Rerh ffi Recrit = 2000. When the transition is
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complete in the rhombic channels another abrupt change
occurs. Thereafter, the dimensions again decrease until
the flow in the triangular channels becomes turbulent (third
spike). It follows that, in this range, the optimal dimensions
are dependent on the approach used for capturing transi-
tion in the model.

Doubts about the validity of this model might arise
when most of the flows are laminar or transitional. In fact,
under these conditions, the optimal core thickness becomes
large (Fig. 7) and the best performance occurs at low order
of corrugation. The confluence of these two effects causes
the flow to be in a developing mode over most of the panel
(see Appendix 1), thus violating a key assumption. When
the model is used in such conditions, care should be taken
to ensure the hypotheses are not violated. This is a partic-
ular problem at the micro-scale. Referring to Eq. (12), if W

and L become proportionally smaller, then the ratio W/L2

becomes large. Thus, even if P is kept constant (in fact, it is
likely to decrease as length-scales get smaller), Pp decreases
and the optimal flow is laminar.

6.3. Material trends

The four plots in Fig. 5 reveal effects of the material
properties. Only two are needed to characterize the system:
the Prandtl number of the fluid (Pr) and the ratio of the
conductivities of solid to fluid. Comparing the aluminum-
gasoline and titanium-gasoline systems, we note that the
10-fold increase in the conductivity ratio yields only a mar-
ginal benefit in the thermal performance: a synopsis of this
phenomenon is provided in Appendix 2. Similarly, a com-
parison of the systems aluminum-air and aluminum-water
reveals that a 50-fold increase in Pr from air to water
(0.7–3.57) more than compensates a 23-fold decrease in
the conductivity ratio (from 7000 to 300). Consequently,
the aluminum-water system has superior performance.

A more relevant comparison is obtained by plotting the
heat dissipation parameter Q/(Tm,max � Tf,in)W against the
pumping power parameter PL2=W (Fig. 9), which incorpo-
rates the effect of the fluid property parameter U. This com-
parison reveals that exchanging air for water provides
nearly two orders of magnitude benefit, demonstrating that
U is the most influential material parameter.

6.4. Thermo-structural designs

The large core densities for optimal active cooling are
far from the structural optimum [1]. To illustrate the con-
sequences, we use gasoline as the cooling medium. From
a structural perspective, in the transverse direction, n = 4
is the preferred order of corrugation, whereas n = 1 is pref-
erable for longitudinal loads [1]. The heat transfer perfor-
mance of these two panels, optimized for minimum
weight under flexural loads, are plotted as a function of
the loading parameter V2/EM on Fig. 10, for a wide range
of pumping power parameter. It is apparent that the struc-
turally optimized panels have appreciably diminished ther-
mal performance, relative to their thermally optimized
counterparts. Note, however, that, for some panels, the
reduction from optimality is small: less than a factor two.
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7. Conclusions

Geometric optimization of prismatic panels with corru-
gated and diamond cores has been performed with the goal
of maximizing their active cooling performance. We have
presented an approach having the attribute that it incorpo-
rates physical quantities of primary relevance to design
optimization, while still retaining generality through non-
dimensional groups. Two new non-dimensional parame-
ters reduce the number of free variables, while retaining
a clear connection with physical quantities of interest,
namely the pumping power, the dissipated heat flux, the
inlet fluid temperature and the maximum temperature in
the panel.

Prior analytical methods [3,16,17] have been extended to
account for the presence of two geometrically different
families (triangular near the faces and rhombic elsewhere),
which experience different flow conditions (laminar or tur-
bulent). Since neither the inlet flow velocity nor the pres-
sure drop are known a priori, instead, the pumping
power is used as the imposed quantity.

A genetic algorithm has been used to find the geometries
that maximize the heat transfer parameter at various levels
of the pumping power; four different material systems
were analyzed (aluminum-air, aluminum-water, aluminum-
gasoline and titanium-gasoline). The most important fluid
property emerges as kfq2

f =l
3
f : the optimal cooling medium

maximizes this quantity. The analysis revealed that the
geometry can be optimized for a wide range of the order
of corrugation (the number of straight core segments per
unit cell) and corrugation angle without much detriment
in thermal performance. These findings provide consider-
able geometric flexibility when attempting combined ther-
mal and structural optimization. In some situations,
structurally optimized geometries provide active cooling
performances within a factor two of thermally optimized
panels.
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3 By virtue of the non-slip hypothesis, heat is transferred by pure
conduction from the solid to the first layer of motionless fluid near the
wall, resulting in h = kf(oTf/og)jg=0/(Tw � Tf), where g is the coordinate
normal to the core web.
Appendix 1. Summary of conditions leading to fully

developed flow profiles [18]

For laminar flow, the kinematical and thermal entry
lengths, X and XT respectively, in a duct with hydraulic
diameter D are given by

X � 0:026ReDD

X T � PrX
ðA:1Þ

where ReD ¼ qfuD=lf , with u the average flow velocity in
the duct.
For turbulent flow, the two entry lengths are similar to
each other, and much shorter than in the laminar case:

X � X T � 10D ðA:2Þ
Appendix 2. The role of the thermal conductivity of the solid

The ratio of the solid to the fluid thermal conductivity,
embedded in the heat transfer index (Eq. (11)), is intimately
related to the geometric parameters. A qualitative argu-
ment on its effect can be presented as follows.

In the geometries considered, heat is transferred down
the core by conduction and released to the fluid via convec-
tion. The thermal resistance associated with conduction
scales as Rcond 
 1/ks, whereas the convective resistance
scales as Rconv 
 1/h 
 1/kf.

3

Since the principle in heat transfer enhancement is to
reduce the highest thermal resistance, improving the solid
conductivity will help only in situations where Rcond > Rconv.

A more quantitative assessment can be given for fixed

fluid properties.
For any given fluid, maximizing the heat transfer perfor-

mance of the structure is equivalent to maximizing the
panel-level Nusselt number (see Eq. (3)). This is the sum
of two terms (Eq. (31)): the first scales with 1� �qc, due
to convection from the faces into the fluid, whereas the sec-
ond scales with �qc, and expresses the contribution from the
core to the overall heat sink performance. We can re-write
this core contribution as

Nucore
H ¼ �qcb

ffiffiffiffiffiffiffiffiffiffiffi
ks=kf

p
tanh

bffiffiffiffiffiffiffiffiffiffiffi
ks=kf

p
sin h

 !
ðA:3Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NuavgH c=t

p
, and Nuavg ¼ Nutr

Dtr=H c
/tr þ Nurh

Drh=H c
/rh.

For laminar flow, the parameter b is only a function of
the panel geometry, whereas for turbulent flow it also
depends on the Prandtl number of the fluid (see Table 1).

If we estimate the order of magnitude of b (using the
correlations presented in Section 3.3), we can plot the core
performance against the conductivity ratio (Fig. A1).
Notice that a high value of b implies a low convective resis-
tance, and as a result, increasing the solid conductivity has
a significant effect; conversely, at low b the convective resis-
tance is high, and the effect of the solid conductivity satu-
rates. For gasoline, changing from aluminum to titanium
(an order of magnitude increase in the conductivity)
increases the core performance by less than a factor 3 at
high b but only 30% at low b.

It is worth mentioning that these conclusions only hold
true at fixed fluid properties, since the thermal performance
depends on kf and ks separately, and not only on the con-
ductivity ratio.
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Appendix 3. The genetic algorithm

A genetic algorithm [21,22] was coded and used for all
optimizations. The real-coded version was preferred over
the more popular binary-coded version, for its ease of imple-
mentation and fast convergence. The ranges of the four opti-
mization variables were divided into sub-intervals (220 for
Hc/L and t/L, 29 for h and 25 for n); with the end points of
each uniquely associated with an integer (between 1 and
the number of sub-intervals for that variable). In this algo-
rithm, each of these 4 numbers is a gene, so that each com-
pletely expresses a variable. Chromosomes were formed as
vectors of 4 genes. A random population of 6000 chromo-
somes was initially created. The fitness of each chromosome
(i.e. the value of the thermal parameter) was calculated and
the population sorted in decreasing order of fitness. The best
20–40 chromosomes were retained (elitism), whereas the
others were combined (two-by-two) in accordance with a
set of rules to generate a new population (crossover). A com-
bination of three crossover strategies was used to generate
the child chromosomes: one-point (all genes of the two par-
ents are exchanged after a random position), two-point (all
the genes of the two parents are exchanged between two ran-
dom positions) and weighed average (all the genes of the
child chromosome were created as some weighed average
of the genes of its parents). A small fraction of the new pop-
ulation (5%) was randomly modified (mutation) to allow the
algorithm to sample a wide search space. This process was
repeated for 30 times. After a convergence check, the best
chromosome was chosen as the optimal.

The performance of the optimizer (its ability to converge
to the global maximum) was tested against a brute-force
scheme, consisting of evaluating of the function at a large
series of discrete points and manually choosing the maxi-
mum. The agreement was excellent in all cases.
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